Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2322135121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568964

RESUMO

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.


Assuntos
Cloretos , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Cloretos/metabolismo , Células Endoteliais/metabolismo , Canais de Cátion TRPV/metabolismo , Transdução de Sinais/fisiologia
2.
Am J Physiol Cell Physiol ; 326(4): C1237-C1247, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581667

RESUMO

Diabetes alters the function of ion channels responsible for regulating arterial smooth muscle membrane potential, resulting in vasoconstriction. Our prior research demonstrated an elevation of TMEM16A in diabetic arteries. Here, we explored the mechanisms involved in Transmembrane protein 16A (TMEM16A) gene expression. Our data indicate that a Snail-mediated repressor complex regulates arterial TMEM16A gene transcription. Snail expression was reduced in diabetic arteries while TMEM16A expression was upregulated. The TMEM16A promoter contained three canonical E-box sites. Electrophoretic mobility and super shift assays revealed that the -154 nt E-box was the binding site of the Snail repressor complex and binding of the repressor complex decreased in diabetic arteries. High glucose induced a biphasic contractile response in pressurized nondiabetic mouse hindlimb arteries incubated ex vivo. Hindlimb arteries incubated in high glucose also showed decreased phospho-protein kinase D1 and TMEM16A expression. In hindlimb arteries from nondiabetic mice, administration of a bolus dose of glucose activated protein kinase D1 signaling to induce Snail degradation. In both in vivo and ex vivo conditions, Snail expression exhibited an inverse relationship with the expression of protein kinase D1 and TMEM16A. In diabetic mouse arteries, phospho-protein kinase D1 increased while Akt2 and pGSK3ß levels declined. These results indicate that in nondiabetic mice, high glucose triggers a transient deactivation of the Snail repressor complex to increase arterial TMEM16A expression independently of insulin signaling. Conversely, insulin resistance activates GSK3ß signaling and enhances arterial TMEM16A channel expression. These data have uncovered the Snail-mediated regulation of arterial TMEM16A expression and its dysfunction during diabetes.NEW & NOTEWORTHY The calcium-activated chloride channel, TMEM16A, is upregulated in the diabetic vasculature to cause increased vasoconstriction. In this paper, we have uncovered that the TMEM16A gene expression is controlled by a Snail-mediated repressor complex that uncouples with both insulin-dependent and -independent pathways to allow for upregulated arterial protein expression thereby causing vasoconstriction. The paper highlights the effect of short- and long-term glucose-induced dysfunction of an ion channel expression as a causative factor in diabetic vascular disease.


Assuntos
Diabetes Mellitus , Insulinas , Animais , Camundongos , Anoctamina-1/metabolismo , Artérias/metabolismo , Diabetes Mellitus/metabolismo , Músculo Liso Vascular/metabolismo , Receptor de Insulina/metabolismo
3.
Sci Signal ; 16(811): eadh9399, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963195

RESUMO

Systemic blood pressure is acutely controlled by total peripheral resistance as determined by the diameter of small arteries and arterioles, the contractility of which is regulated by endothelial cells lining the lumen of blood vessels. We investigated the physiological functions of the chloride (Cl-) channel TMEM16A in endothelial cells. TMEM16A channels generated calcium (Ca2+)-activated Cl- currents in endothelial cells from control (TMEM16Afl/fl) mice that were absent in those from mice with tamoxifen-inducible, endothelial cell-specific knockout of TMEM16A (TMEM16A ecKO). TMEM16A currents in endothelial cells were activated by the muscarinic receptor agonist acetylcholine and an agonist of the Ca2+ channel TRPV4, which localized in nanoscale proximity with TMEM16A as assessed by single-molecule localization imaging of endothelial cells. Acetylcholine stimulated TMEM16A currents by activating Ca2+ influx through surface TRPV4 channels without altering the nanoscale properties of TMEM16A and TRPV4 surface clusters or their colocalization. In pressurized arteries, activation of TMEM16A channels in endothelial cells induced by acetylcholine; TRPV4 channel stimulation; or intraluminal ATP, another vasodilator, produced hyperpolarization and dilation. Furthermore, deficiency of TMEM16A channels in endothelial cells resulted in increased systemic blood pressure in conscious mice. These data indicate that vasodilators stimulate TRPV4 channels, leading to Ca2+-dependent activation of nearby TMEM16A channels in endothelial cells to produce arterial hyperpolarization, vasodilation, and reduced blood pressure. Thus, TMEM16A is an anion channel in endothelial cells that regulates arterial contractility and blood pressure.


Assuntos
Canais de Cátion TRPV , Vasodilatadores , Camundongos , Animais , Vasodilatadores/farmacologia , Pressão Sanguínea/fisiologia , Acetilcolina/farmacologia , Células Endoteliais/metabolismo , Vasodilatação/fisiologia , Cloretos/metabolismo , Cálcio/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(31): e2303238120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494394

RESUMO

Endothelial cells (ECs) line the lumen of all blood vessels and regulate functions, including contractility. Physiological stimuli, such as acetylcholine (ACh) and intravascular flow, activate transient receptor potential vanilloid 4 (TRPV4) channels, which stimulate small (SK3)- and intermediate (IK)-conductance Ca2+-activated potassium channels in ECs to produce vasodilation. Whether physiological vasodilators also modulate the surface abundance of these ion channels in ECs to elicit functional responses is unclear. Here, we show that ACh and intravascular flow stimulate rapid anterograde trafficking of an intracellular pool of SK3 channels in ECs of resistance-size arteries, which increases surface SK3 protein more than two-fold. In contrast, ACh and flow do not alter the surface abundance of IK or TRPV4 channels. ACh triggers SK3 channel trafficking by activating TRPV4-mediated Ca2+ influx, which stimulates Rab11A, a Rab GTPase associated with recycling endosomes. Superresolution microscopy data demonstrate that SK3 trafficking specifically increases the size of surface SK3 clusters which overlap with TRPV4 clusters. We also show that Rab11A-dependent trafficking of SK3 channels is an essential contributor to vasodilator-induced SK current activation in ECs and vasorelaxation. In summary, our data demonstrate that vasodilators activate Rab11A, which rapidly delivers an intracellular pool of SK3 channels to the vicinity of surface TRPV4 channels in ECs. This trafficking mechanism increases surface SK3 cluster size, elevates SK3 current density, and produces vasodilation. These data also demonstrate that SK3 and IK channels are differentially regulated by trafficking-dependent and -independent signaling mechanisms in endothelial cells.


Assuntos
Canais de Cátion TRPV , Vasodilatadores , Vasodilatadores/farmacologia , Canais de Cátion TRPV/metabolismo , Células Endoteliais/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Artérias/metabolismo , Vasodilatação , Acetilcolina/metabolismo , Endotélio Vascular/metabolismo
5.
bioRxiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333248

RESUMO

Endothelial cells (ECs) regulate vascular contractility to control regional organ blood flow and systemic blood pressure. Several cation channels are expressed in ECs which regulate arterial contractility. In contrast, the molecular identity and physiological functions of anion channels in ECs is unclear. Here, we generated tamoxifen-inducible, EC-specific TMEM16A knockout ( TMEM16A ecKO) mice to investigate the functional significance of this chloride (Cl - ) channel in the resistance vasculature. Our data demonstrate that TMEM16A channels generate calcium-activated Cl - currents in ECs of control ( TMEM16A fl/fl ) mice that are absent in ECs of TMEM16A ecKO mice. Acetylcholine (ACh), a muscarinic receptor agonist, and GSK101, a TRPV4 agonist, activate TMEM16A currents in ECs. Single molecule localization microscopy data indicate that surface TMEM16A and TRPV4 clusters locate in very close nanoscale proximity, with ∼18% exhibiting overlap in ECs. ACh stimulates TMEM16A currents by activating Ca 2+ influx through surface TRPV4 channels without altering the size or density of TMEM16A or TRPV4 surface clusters, their spatial proximity or colocalization. ACh-induced activation of TMEM16A channels in ECs produces hyperpolarization in pressurized arteries. ACh, GSK101 and intraluminal ATP, another vasodilator, all dilate pressurized arteries through TMEM16A channel activation in ECs. Furthermore, EC-specific knockout of TMEM16A channels elevates systemic blood pressure in conscious mice. In summary, these data indicate that vasodilators stimulate TRPV4 channels, leading to Ca 2+ -dependent activation of nearby TMEM16A channels in ECs to produce arterial hyperpolarization, vasodilation and a reduction in blood pressure. We identify TMEM16A as an anion channel present in ECs that regulates arterial contractility and blood pressure. One sentence summary: Vasodilators stimulate TRPV4 channels, leading to calcium-dependent activation of nearby TMEM16A channels in ECs to produce arterial hyperpolarization, vasodilation and a reduction in blood pressure.

6.
Am J Physiol Heart Circ Physiol ; 320(3): H1089-H1101, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449847

RESUMO

The pathological involvement of anion channels in vascular dysfunction that occurs during type 2 diabetes (T2D) is unclear. Here, we tested the hypothesis that TMEM16A, a calcium-activated chloride (Cl-) channel, contributes to modifications in arterial contractility during T2D. Our data indicate that T2D increased TMEM16A mRNA in arterial smooth muscle cells and total and surface TMEM16A protein in resistance-size cerebral and hindlimb arteries of mice. To examine vascular cell types in which TMEM16A protein increased and the functional consequences of TMEM16A upregulation during T2D, we generated tamoxifen-inducible, smooth muscle cell-specific TMEM16A knockout (TMEM16A smKO) mice. T2D increased both TMEM16A protein and Cl- current density in arterial smooth muscle cells of control (TMEM16Afl/fl) mice. In contrast, T2D did not alter arterial TMEM16A protein or Cl- current density in smooth muscle cells of TMEM16A smKO mice. Intravascular pressure stimulated greater vasoconstriction (myogenic tone) in the arteries of T2D TMEM16Afl/fl mice than in the arteries of nondiabetic TMEM16Afl/fl mice. This elevation in myogenic tone in response to T2D was abolished in the arteries of T2D TMEM16A smKO mice. T2D also reduced Akt2 protein and activity in the arteries of T2D mice. siRNA-mediated knockdown of Akt2, but not Akt1, increased arterial TMEM16A protein in nondiabetic mice. In summary, data indicate that T2D is associated with an increase in TMEM16A expression and currents in arterial smooth muscle cells that produces vasoconstriction. Data also suggest that a reduction in Akt2 function drives these pathological alterations during T2D.NEW & NOTEWORTHY We investigated the involvement of TMEM16A channels in vascular dysfunction during type 2 diabetes (T2D). TMEM16A message, protein, and currents were higher in smooth muscle cells of resistance-size arteries during T2D. Pressure stimulated greater vasoconstriction in the arteries of T2D mice that was abolished in the arteries of TMEM16A smKO mice. Akt2 protein and activity were both lower in T2D arteries, and Akt2 knockdown elevated TMEM16A protein. We propose that a decrease in Akt2 function stimulates TMEM16A expression in arterial smooth muscle cells, leading to vasoconstriction during T2D.


Assuntos
Anoctamina-1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Angiopatias Diabéticas/metabolismo , Membro Posterior/irrigação sanguínea , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Vasoconstrição , Animais , Anoctamina-1/deficiência , Anoctamina-1/genética , Artérias/metabolismo , Artérias/fisiopatologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Células HEK293 , Humanos , Resistência à Insulina , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estreptozocina , Regulação para Cima
9.
Elife ; 92020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32364494

RESUMO

PKD2 (polycystin-2, TRPP1), a TRP polycystin channel, is expressed in endothelial cells (ECs), but its physiological functions in this cell type are unclear. Here, we generated inducible, EC-specific Pkd2 knockout mice to examine vascular functions of PKD2. Data show that a broad range of intravascular flow rates stimulate EC PKD2 channels, producing vasodilation. Flow-mediated PKD2 channel activation leads to calcium influx that activates SK/IK channels and eNOS serine 1176 phosphorylation in ECs. These signaling mechanisms produce arterial hyperpolarization and vasodilation. In contrast, EC PKD2 channels do not contribute to acetylcholine-induced vasodilation, suggesting stimulus-specific function. EC-specific PKD2 knockout elevated blood pressure in mice without altering cardiac function or kidney anatomy. These data demonstrate that flow stimulates PKD2 channels in ECs, leading to SK/IK channel and eNOS activation, hyperpolarization, vasodilation and a reduction in systemic blood pressure. Thus, PKD2 channels are a major component of functional flow sensing in the vasculature.


Assuntos
Pressão Arterial , Células Endoteliais/metabolismo , Hipertensão/metabolismo , Mecanotransdução Celular , Artérias Mesentéricas/metabolismo , Canais de Cátion TRPP/metabolismo , Vasodilatação , Animais , Sinalização do Cálcio , Hipertensão/genética , Hipertensão/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Masculino , Potenciais da Membrana , Artérias Mesentéricas/fisiopatologia , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Fluxo Sanguíneo Regional , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/genética
10.
Proc Natl Acad Sci U S A ; 116(52): 27095-27104, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822608

RESUMO

PKD2 (polycystin-2, TRPP1) channels are expressed in a wide variety of cell types and can regulate functions, including cell division and contraction. Whether posttranslational modification of PKD2 modifies channel properties is unclear. Similarly uncertain are signaling mechanisms that regulate PKD2 channels in arterial smooth muscle cells (myocytes). Here, by studying inducible, cell-specific Pkd2 knockout mice, we discovered that PKD2 channels are modified by SUMO1 (small ubiquitin-like modifier 1) protein in myocytes of resistance-size arteries. At physiological intravascular pressures, PKD2 exists in approximately equal proportions as either nonsumoylated (PKD2) or triple SUMO1-modifed (SUMO-PKD2) proteins. SUMO-PKD2 recycles, whereas unmodified PKD2 is surface-resident. Intravascular pressure activates voltage-dependent Ca2+ influx that stimulates the return of internalized SUMO-PKD2 channels to the plasma membrane. In contrast, a reduction in intravascular pressure, membrane hyperpolarization, or inhibition of Ca2+ influx leads to lysosomal degradation of internalized SUMO-PKD2 protein, which reduces surface channel abundance. Through this sumoylation-dependent mechanism, intravascular pressure regulates the surface density of SUMO-PKD2-mediated Na+ currents (INa) in myocytes to control arterial contractility. We also demonstrate that intravascular pressure activates SUMO-PKD2, not PKD2, channels, as desumoylation leads to loss of INa activation in myocytes and vasodilation. In summary, this study reveals that PKD2 channels undergo posttranslational modification by SUMO1, which enables physiological regulation of their surface abundance and pressure-mediated activation in myocytes and thus control of arterial contractility.

11.
Nat Commun ; 10(1): 1200, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867417

RESUMO

Mechanosensitive ion channels rely on membrane composition to transduce physical stimuli into electrical signals. The Piezo1 channel mediates mechanoelectrical transduction and regulates crucial physiological processes, including vascular architecture and remodeling, cell migration, and erythrocyte volume. The identity of the membrane components that modulate Piezo1 function remain largely unknown. Using lipid profiling analyses, we here identify dietary fatty acids that tune Piezo1 mechanical response. We find that margaric acid, a saturated fatty acid present in dairy products and fish, inhibits Piezo1 activation and polyunsaturated fatty acids (PUFAs), present in fish oils, modulate channel inactivation. Force measurements reveal that margaric acid increases membrane bending stiffness, whereas PUFAs decrease it. We use fatty acid supplementation to abrogate the phenotype of gain-of-function Piezo1 mutations causing human dehydrated hereditary stomatocytosis. Beyond Piezo1, our findings demonstrate that cell-intrinsic lipid profile and changes in the fatty acid metabolism can dictate the cell's response to mechanical cues.


Assuntos
Anemia Hemolítica Congênita/dietoterapia , Gorduras na Dieta/metabolismo , Hidropisia Fetal/dietoterapia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Anemia Hemolítica Congênita/genética , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/metabolismo , Mutação com Ganho de Função , Células HEK293 , Humanos , Hidropisia Fetal/genética , Canais Iônicos/genética , Metabolismo dos Lipídeos/fisiologia , Camundongos , Microscopia de Força Atômica , Técnicas de Patch-Clamp
12.
Elife ; 72018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30511640

RESUMO

Systemic blood pressure is determined, in part, by arterial smooth muscle cells (myocytes). Several Transient Receptor Potential (TRP) channels are proposed to be expressed in arterial myocytes, but it is unclear if these proteins control physiological blood pressure and contribute to hypertension in vivo. We generated the first inducible, smooth muscle-specific knockout mice for a TRP channel, namely for PKD2 (TRPP1), to investigate arterial myocyte and blood pressure regulation by this protein. Using this model, we show that intravascular pressure and α1-adrenoceptors activate PKD2 channels in arterial myocytes of different systemic organs. PKD2 channel activation in arterial myocytes leads to an inward Na+ current, membrane depolarization and vasoconstriction. Inducible, smooth muscle cell-specific PKD2 knockout lowers both physiological blood pressure and hypertension and prevents pathological arterial remodeling during hypertension. Thus, arterial myocyte PKD2 controls systemic blood pressure and targeting this TRP channel reduces high blood pressure.


Assuntos
Artérias/metabolismo , Hipertensão/genética , Miócitos de Músculo Liso/metabolismo , Receptores Adrenérgicos alfa 1/genética , Sódio/metabolismo , Canais de Cátion TRPP/genética , Animais , Artérias/fisiopatologia , Pressão Sanguínea/fisiologia , Cátions Monovalentes , Regulação da Expressão Gênica , Membro Posterior/irrigação sanguínea , Membro Posterior/citologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Transporte de Íons , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/patologia , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais , Canais de Cátion TRPP/deficiência , Vasoconstrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...